Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Nature ; 602(7897): 468-474, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082448

RESUMEN

Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.


Asunto(s)
Intestinos , Saciedad , Células Receptoras Sensoriales , Sed , Ganglios Sensoriales/citología , Intestinos/citología , Intestinos/inervación , Concentración Osmolar , Presión Osmótica , Saciedad/fisiología , Células Receptoras Sensoriales/citología , Sed/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Agua/metabolismo
2.
Development ; 147(7)2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32165493

RESUMEN

The vertebrate inner ear employs sensory hair cells and neurons to mediate hearing and balance. In mammals, damaged hair cells and neurons are not regenerated. In contrast, hair cells in the inner ear of zebrafish are produced throughout life and regenerate after trauma. However, it is unknown whether new sensory neurons are also formed in the adult zebrafish statoacoustic ganglion (SAG), the sensory ganglion connecting the inner ear to the brain. Using transgenic lines and marker analysis, we identify distinct cell populations and anatomical landmarks in the juvenile and adult SAG. In particular, we analyze a Neurod/Nestin-positive progenitor pool that produces large amounts of new neurons at juvenile stages, which transitions to a quiescent state in the adult SAG. Moreover, BrdU pulse chase experiments reveal the existence of a proliferative but otherwise marker-negative cell population that replenishes the Neurod/Nestin-positive progenitor pool at adult stages. Taken together, our study represents the first comprehensive characterization of the adult zebrafish SAG showing that zebrafish, in sharp contrast to mammals, display continued neurogenesis in the SAG well beyond embryonic and larval stages.


Asunto(s)
Células Madre Adultas/fisiología , Oído Interno/fisiología , Ganglios Sensoriales/citología , Células Ciliadas Auditivas/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Pez Cebra , Células Madre Adultas/citología , Envejecimiento/fisiología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Oído Interno/citología , Embrión no Mamífero , Ganglios Sensoriales/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Larva , Proteínas del Tejido Nervioso/metabolismo , Nestina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Nicho de Células Madre/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
3.
Genesis ; 58(5): e23356, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32049434

RESUMEN

Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.


Asunto(s)
Ganglios Sensoriales/crecimiento & desarrollo , Lampreas/crecimiento & desarrollo , Cresta Neural/crecimiento & desarrollo , Neurogénesis , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ganglios Sensoriales/citología , Ganglios Sensoriales/metabolismo , Lampreas/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Cráneo/crecimiento & desarrollo
4.
Nat Commun ; 10(1): 5530, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797926

RESUMEN

The adult mammalian inner ear lacks the capacity to divide or regenerate. Damage to inner ear generally leads to permanent hearing loss in humans. Here, we present that reprogramming of the adult inner ear induces renewed proliferation and regeneration of inner ear cell types. Co-activation of cell cycle activator Myc and inner ear progenitor gene Notch1 induces robust proliferation of diverse adult cochlear sensory epithelial cell types. Transient MYC and NOTCH activities enable adult supporting cells to respond to transcription factor Atoh1 and efficiently transdifferentiate into hair cell-like cells. Furthermore, we uncover that mTOR pathway participates in MYC/NOTCH-mediated proliferation and regeneration. These regenerated hair cell-like cells take up the styryl dye FM1-43 and are likely to form connections with adult spiral ganglion neurons, supporting that Myc and Notch1 co-activation is sufficient to reprogram fully mature supporting cells to proliferate and regenerate hair cell-like cells in adult mammalian auditory organs.


Asunto(s)
Proliferación Celular/fisiología , Cóclea/fisiología , Células Ciliadas Auditivas Internas/fisiología , Regeneración/fisiología , Animales , Proliferación Celular/genética , Cóclea/citología , Cóclea/metabolismo , Oído Interno/citología , Oído Interno/metabolismo , Oído Interno/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Ganglios Sensoriales/citología , Ganglios Sensoriales/metabolismo , Ganglios Sensoriales/fisiología , Regulación de la Expresión Génica , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Regeneración/genética
5.
PLoS One ; 14(9): e0216263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31487284

RESUMEN

Explants of embryonic chick sympathetic and sensory ganglia were found to exhibit asymmetric radial outgrowth of neurites under standard culture conditions with or without exogenous Nerve Growth Factor [NGF]. Opposing sides of an explant exhibited: a) differences in neurite length and, b) differences in neurite morphology. Strikingly, this asymmetry exhibited co-orientation among segregated, neighboring explants. The underlying mechanism(s) of the asymmetry and its co-orientation are not known but appear to depend on cell clustering because dissociated sympathetic neurons do not exhibit co-orientation whereas re-aggregated clusters of cells do. This emergent behavior may be similar to the community effect described in other cell types. If a similar phenomenon exists in the embryo, or in maturity, it may contribute to the establishment of proper orientation of neurite outgrowth during development and/or injury-induced neuronal plasticity.


Asunto(s)
Ganglios Sensoriales/citología , Proyección Neuronal , Cultivo Primario de Células/métodos , Técnicas de Cultivo de Tejidos/métodos , Animales , Embrión de Pollo
6.
Cell Rep ; 26(13): 3522-3536.e5, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917309

RESUMEN

In humans, many cases of congenital insensitivity to pain (CIP) are caused by mutations of components of the NGF/TrkA signaling pathway, which is required for survival and specification of nociceptors and plays a major role in pain processing. Mutations in PRDM12 have been identified in CIP patients that indicate a putative role for this transcriptional regulator in pain sensing. Here, we show that Prdm12 expression is restricted to developing and adult nociceptors and that its genetic ablation compromises their viability and maturation. Mechanistically, we find that Prdm12 is required for the initiation and maintenance of the expression of TrkA by acting as a modulator of Neurogenin1/2 transcription factor activity, in frogs, mice, and humans. Altogether, our results identify Prdm12 as an evolutionarily conserved key regulator of nociceptor specification and as an actionable target for new pain therapeutics.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Nociceptores/citología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/genética , Línea Celular , Evolución Molecular , Femenino , Ganglios Sensoriales/citología , Técnicas de Inactivación de Genes , Células Madre Embrionarias Humanas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/citología , Nociceptores/metabolismo , Receptor trkA/metabolismo , Tretinoina/fisiología , Xenopus laevis
7.
J Chem Neuroanat ; 96: 116-125, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30639448

RESUMEN

Transient receptor potential melastatin-3 (TRPM3) is a nonselective cation channel, has permeability of Ca2+, and probably participates in thermosensitive nociception. In this study, immunohistochemistry for TRPM3 was conducted in the rat trigeminal, glossopharyngeal and vagal sensory ganglia. TRPM3-immunoreactivity was expressed by half of sensory neurons in the trigeminal (TG), petrosal (PG) and jugular ganglia (JG), and by about 80% of sensory neurons in the nodose ganglion (NG). They mostly had small to medium-sized cell bodies. A trichrome immunofluorescence method showed co-existence of TRPM3 with TRP vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP). Approximately 70% of TRPM3-immunoreactive (-IR) neurons contained TRPV1-immunoreactivity in all the examined ganglia. More than 40% of TRPM3-IR neurons exhibited CGRP-immunoreactivity in the TG, PG and JG. Only a few sensory neurons co-expressed TRPM3- and CGRP-immunoreactivity in the NG. In addition, more than 40% of TRPM3-IR neurons bound to isolectin B4 in all the examined ganglia. By combination of retrograde tracing method and immunohistochemistry, half of TG neurons innervating the facial skin and incisive papilla expressed TRPM3-immunoreactivity whereas approximately 20% of those innervating the tooth pulp contained TRPM3-immunoreactivity. Co-expression of TRPM3-immunoreactivity with TRPV1- or CGRP-immunoreactivity was common among cutaneous and papillary TG neurons but not among pulpal TG neurons. More than 60% of PG and JG neurons innervating the external ear canal skin and circumvallate papilla contained TRPM3-immunoreactivity. Co-expression of TRPM3 with TRPV1 or CGRP was common among PG and JG neurons innervating the external ear canal skin. However, a smaller number of TRPM3-IR neurons co-expressing TRPV1- or CGRP-immunoreactivity innervate the circumvallate papilla in the PG. The present study suggests that expression of TRPM3 and its co-existence with TRPV1 and CGRP in sensory neurons depend on the variety of their peripheral targets in the trigeminal, glossopharyngeal and vagal nervous systems.


Asunto(s)
Cara/inervación , Ganglios Sensoriales/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ganglios Sensoriales/citología , Masculino , Nocicepción/fisiología , Ratas , Ratas Wistar , Canales Catiónicos TRPV/metabolismo
8.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29695045

RESUMEN

Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.


Asunto(s)
Axones/metabolismo , GMP Cíclico/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Animales , Biomarcadores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Susceptibilidad a Enfermedades , Ganglios Sensoriales/citología , Ganglios Sensoriales/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Técnicas In Vitro , Receptores del Factor Natriurético Atrial/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Transmisión Sináptica
9.
EMBO J ; 37(1): 39-49, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28963397

RESUMEN

Many animals respond to threats by releasing alarm pheromones (APs) that warn conspecifics. In mice, detection of the AP 2-sec-butyl-4,5-dihydrothiazole (SBT) is mediated by chemosensory neurons residing in the Grueneberg ganglion (GG) of the anterior nasal region. Although the molecular mechanisms underlying activation of GG neurons by SBT and other substances are still unclear, recent studies have reported an involvement of the transmembrane guanylyl cyclase (GC) subtype GC-G in chemosensory signaling in the GG Here, we show that SBT directly binds with high affinity to the extracellular domain of GC-G and elicits an enhanced enzymatic activity of this protein. In line with this finding, heterologous expression of GC-G renders cells responsive to SBT while activation by SBT was strongly attenuated in GG neurons from GC-G-deficient mice. Consistently, SBT-induced fear-associated behaviors, SBT-evoked elevated blood pressure, and increased serum levels of the stress hormone corticosterone were clearly reduced in GC-G-knockout animals compared to wild-type mice. These observations suggest that GC-G serves as an unusual receptor in GG neurons mediating the detection of the volatile AP substance SBT.


Asunto(s)
Conducta Animal/efectos de los fármacos , GMP Cíclico/metabolismo , Ganglios Sensoriales/fisiología , Guanilato Ciclasa/fisiología , Proteínas de la Membrana/fisiología , Neuronas/fisiología , Tiazoles/farmacología , Animales , Ganglios Sensoriales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Nariz/inervación , Feromonas/farmacología , Transducción de Señal/efectos de los fármacos
10.
Development ; 144(15): 2810-2823, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684624

RESUMEN

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.


Asunto(s)
Transducción de Señal/fisiología , Vertebrados/embriología , Animales , Comunicación Celular/genética , Comunicación Celular/fisiología , Embrión de Pollo , Pollos , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Electroporación , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Ganglios Sensoriales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Codorniz , Órganos de los Sentidos/citología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/metabolismo
11.
Dev Biol ; 425(1): 85-99, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28315296

RESUMEN

Cranial sensory ganglia are components of the peripheral nervous system that possess a significant somatosensory role and include neurons within the trigeminal and epibranchial nerve bundles. Although it is well established that these ganglia arise from interactions between neural crest and neurogenic placode cells, the molecular basis of ganglia assembly is still poorly understood. Members of the Annexin protein superfamily play key roles in sensory nervous system development throughout metazoans. Annexin A6 is expressed in chick trigeminal and epibranchial placode cell-derived neuroblasts and neurons, but its function in cranial ganglia formation has not been elucidated. To this end, we interrogated the role of Annexin A6 using gene perturbation studies in the chick embryo. Our data reveal that placode cell-derived neuroblasts with reduced Annexin A6 levels ingress and migrate normally to the ganglionic anlage, where neural crest cell corridors correctly form around them. Strikingly, while Annexin A6-depleted placode cell-derived neurons still express mature neuronal markers, they fail to form two long processes, which are considered morphological features of mature neurons, and no longer innervate their designated targets due to the absence of this bipolar morphology. Moreover, overexpression of Annexin A6 causes some placode cell-derived neurons to form extra protrusions alongside these bipolar processes. These data demonstrate that the molecular program associated with neuronal maturation is distinct from that orchestrating changes in neuronal morphology, and, importantly, reveal Annexin A6 to be a key membrane scaffolding protein during sensory neuron membrane biogenesis. Collectively, our results provide novel insight into mechanisms underscoring morphological changes within placode cell-derived neurons that are essential for cranial gangliogenesis.


Asunto(s)
Anexina A6/metabolismo , Proteínas Aviares/metabolismo , Membrana Celular/metabolismo , Ganglios Sensoriales/metabolismo , Células Receptoras Sensoriales/metabolismo , Cráneo/inervación , Empalme Alternativo , Animales , Anexina A6/genética , Proteínas Aviares/genética , Secuencia de Bases , Embrión de Pollo , Pollos , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Immunoblotting , Microscopía Confocal , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Receptoras Sensoriales/citología , Homología de Secuencia de Ácido Nucleico
12.
Somatosens Mot Res ; 33(2): 112-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27357901

RESUMEN

Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is a member of the osteonectin family of proteins. In this study, immunohistochemistry for SPARCL1 was performed to obtain its distribution in the human brainstem, cervical spinal cord, and sensory ganglion. SPARCL1-immunoreactivity was detected in neuronal cell bodies including perikarya and proximal dendrites, and the neuropil. The motor nuclei of the IIIrd, Vth, VIth, VIIth, IXth, Xth, XIth, and XIIth cranial nerves and spinal nerves contained many SPARCL1-immunoreactive (-IR) neurons with medium-sized to large cell bodies. Small and medium-sized SPARCL1-IR neurons were distributed in sensory nuclei of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves. In the medulla oblongata, the dorsal column nuclei also had small to medium-sized SPARCL1-IR neurons. In addition, SPARCL1-IR neurons were detected in the nucleus of the trapezoid body and pontine nucleus within the pons and the arcuate nucleus in the medulla oblongata. In the cervical spinal cord, the ventral horn contained some SPARCL1-IR neurons with large cell bodies. These findings suggest that SPARCL1-containing neurons function to relay and regulate motor and sensory signals in the human brainstem. In the dorsal root (DRG) and trigeminal ganglia (TG), primary sensory neurons contained SPARCL1-immunoreactivity. The proportion of SPARCL1-IR neurons in the TG (mean ± SD, 39.9 ± 2.4%) was higher than in the DRG (30.6 ± 2.1%). SPARCL1-IR neurons were mostly medium-sized to large (mean ± SD, 1494.5 ± 708.3 µm(2); range, 320.4-4353.4 µm(2)) in the DRG, whereas such neurons were of various cell body sizes in the TG (mean ± SD, 1291.2 ± 532.8 µm(2); range, 209.3-4326.4 µm(2)). There appears to be a SPARCL1-containing sensory pathway in the ganglion and brainstem of the spinal and trigeminal nervous systems.


Asunto(s)
Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Ganglios Sensoriales/citología , Vías Aferentes , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Neuronas , Médula Espinal/citología
13.
Nature ; 534(7608): 494-9, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27281198

RESUMEN

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Venenos de Araña/farmacología , Estrés Mecánico , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Sensoriales/citología , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Síndrome del Colon Irritable/metabolismo , Masculino , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/química , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Oocitos/metabolismo , Dolor/inducido químicamente , Dolor/metabolismo , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Arañas/química , Especificidad por Sustrato/efectos de los fármacos , Temperatura
14.
J Neurophysiol ; 116(2): 503-21, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27121577

RESUMEN

The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking.


Asunto(s)
Ganglios Sensoriales/citología , Canales de Potasio KCNQ/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Biofisica , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Potasio/metabolismo , Ratas , Sodio/metabolismo , Sinapsis/fisiología , Nervio Vestibular/anatomía & histología , Nervio Vestibular/fisiología
15.
Acta Neuropathol Commun ; 4: 41, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27102221

RESUMEN

There is growing evidence that defective DNA repair in neurons with accumulation of DNA lesions and loss of genome integrity underlies aging and many neurodegenerative disorders. An important challenge is to understand how neurons can tolerate the accumulation of persistent DNA lesions without triggering the apoptotic pathway. Here we study the impact of the accumulation of unrepaired DNA on the chromatin architecture, kinetics of the DNA damage response and transcriptional activity in rat sensory ganglion neurons exposed to 1-to-3 doses of ionizing radiation (IR). In particular, we have characterized the structural, molecular and transcriptional compartmentalization of unrepaired DNA in persistent DNA damaged foci (PDDF). IR induced the formation of numerous transient foci, which repaired DNA within the 24 h post-IR, and a 1-to-3 PDDF. The latter concentrate DNA damage signaling and repair factors, including γH2AX, pATM, WRAP53 and 53BP1. The number and size of PDDF was dependent on the doses of IR administered. The proportion of neurons carrying PDDF decreased over time of post-IR, indicating that a slow DNA repair occurs in some foci. The fine structure of PDDF consisted of a loose network of unfolded 30 nm chromatin fiber intermediates, which may provide a structural scaffold accessible for DNA repair factors. Furthermore, the transcription assay demonstrated that PDDF are transcriptionally silent, although transcription occurred in flanking euchromatin. Therefore, the expression of γH2AX can be used as a reliable marker of gene silencing in DNA damaged neurons. Moreover, PDDF were located in repressive nuclear environments, preferentially in the perinucleolar domain where they were frequently associated with Cajal bodies or heterochromatin clumps forming a structural triad. We propose that the sequestration of unrepaired DNA in discrete PDDF and the transcriptional silencing can be essential to preserve genome stability and prevent the synthesis of aberrant mRNA and protein products encoded by damaged genes.


Asunto(s)
Cromatina/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/ultraestructura , Factores de Edad , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina/efectos de la radiación , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Ganglios Sensoriales/citología , Regulación de la Expresión Génica/efectos de la radiación , Histonas/genética , Histonas/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Traumatismos por Radiación , Ratas , Ratas Sprague-Dawley , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rayos X/efectos adversos
16.
J Neurophysiol ; 115(5): 2536-55, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26936982

RESUMEN

Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between -30 and -40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli.


Asunto(s)
Ganglios Sensoriales/citología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Neuronas Aferentes/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Vestíbulo del Laberinto/inervación , Potenciales de Acción , Animales , Células Cultivadas , Ganglios Sensoriales/metabolismo , Ganglios Sensoriales/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Neuronas Aferentes/fisiología , Ratas , Ratas Long-Evans
17.
Dev Biol ; 415(2): 228-241, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26988119

RESUMEN

We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth.


Asunto(s)
Nervios Craneales/citología , Células Receptoras Sensoriales/citología , Animales , Apoptosis , Axones/fisiología , Diferenciación Celular , Linaje de la Célula , Nervios Craneales/embriología , Ectodermo/citología , Factores de Crecimiento de Fibroblastos/fisiología , Ganglios Sensoriales/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Cresta Neural/citología , Neurogénesis , Factores de Transcripción/genética , Tretinoina/fisiología , Proteína Wnt1/fisiología
18.
Cell Tissue Res ; 364(1): 29-41, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26453396

RESUMEN

Pannexin1 (Panx1) is one of three members of the pannexin protein family. The expression of Panx1 mRNA has been extensively investigated from late embryonic to adult stages. In contrast, expression during early embryonic development is largely unknown. Our aim is to examine the temporal and spatial expression of Panx1 in mouse embryonic development by focusing on embryonic days (E) 9.5 to 12.5. Whole embryos are investigated in order to provide a comprehensive survey. Analyses were performed at the mRNA level by using reverse transcription plus the polymerase chain reaction and whole-mount in situ hybridization. Panx1 mRNA was detected in the heads and bodies of embryos at all developmental stages investigated (E9.5, E10.5, E11.5, E12.5). In particular, the nervous system expressed Panx1 at an early time point. Interestingly, Panx1 expression was found in afferent ganglia of the cranial nerves and spinal cord. This finding is of particular interest in the context of neuropathic pain and other Panx1-related neurological disorders. Our study shows, for the first time, that Panx1 is expressed in the central and peripheral nervous system during early developmental stages. The consequences of Panx1 deficiency or inhibition in a number of experimental paradigms might therefore be predicated on changes during early development.


Asunto(s)
Conexinas/biosíntesis , Embrión de Mamíferos/embriología , Ganglios Sensoriales/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Animales , Conexinas/genética , Embrión de Mamíferos/citología , Ganglios Sensoriales/citología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
19.
Cell Tissue Res ; 364(1): 59-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26463049

RESUMEN

Experience modifies behaviour in animals so that they adapt to their environment. In male noctuid moths, Spodoptera littoralis, brief pre-exposure to various behaviourally relevant sensory signals modifies subsequent behaviour towards the same or different sensory modalities. Correlated with a behavioural increase in responses of male moths to the female-emitted sex pheromone after pre-exposure to olfactory, acoustic or gustatory stimuli, an increase in sensitivity of olfactory neurons within the primary olfactory centre, the antennal lobe, is found for olfactory and acoustic stimuli, but not for gustatory stimuli. Here, we investigated whether anatomical changes occurring in the antennal lobes and in the mushroom bodies (the secondary olfactory centres) possibly correlated with the changes observed in behaviour and in olfactory neuron physiology. Our results showed that significant volume changes occurred in glomeruli (olfactory units) responsive to sex pheromone following exposure to both pheromone and predator sounds. The volume of the mushroom body input region (calyx) also increased significantly after pheromone and predator sound treatment. However, we found no changes in the volume of antennal lobe glomeruli or of the mushroom body calyx after pre-exposure to sucrose. These findings show a relationship of antennal lobe sensitivity changes to the pheromone with changes in the volume of the related glomeruli and the output area of antennal lobe projection neurons elicited by sensory cues causing a behavioural change. Behavioural changes observed after sucrose pre-exposure must originate from changes in higher integration centres in the brain.


Asunto(s)
Ganglios Sensoriales/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Spodoptera/metabolismo , Animales , Femenino , Ganglios Sensoriales/citología , Masculino , Cuerpos Pedunculados/citología , Neuronas Receptoras Olfatorias/citología , Spodoptera/citología
20.
J Comp Neurol ; 524(2): 362-79, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26224333

RESUMEN

The optic tectum in birds and its homologue the superior colliculus in mammals both send major bilateral, nontopographic projections to the nucleus rotundus and caudal pulvinar, respectively. These projections originate from widefield tectal ganglion cells (TGCs) located in layer 13 in the avian tectum and in the lower superficial layers in the mammalian colliculus. The TGCs characteristically have monostratified arrays of brush-like dendritic terminations and respond mostly to bidimensional motion or looming features. In birds, this TGC-mediated tectofugal output is controlled by feedback signals from the nucleus isthmi pars parvocellularis (Ipc). The Ipc neurons display topographically organized axons that densely ramify in restricted columnar terminal fields overlapping various neural elements that could mediate this tectofugal control, including the retinal terminals and the TGC dendrites themselves. Whether the Ipc axons make synaptic contact with these or other tectal neural elements remains undetermined. We double labeled Ipc axons and their presumptive postsynaptic targets in the tectum of chickens (Gallus gallus) with neural tracers and performed an ultrastructural analysis. We found that the Ipc terminal boutons form glomerulus-like structures in the superficial and intermediate tectal layers, establishing asymmetric synapses with several dendritic profiles. In these glomeruli, at least two of the postsynaptic dendrites originated from TGCs. We also found synaptic contacts between retinal terminals and TGC dendrites. These findings suggest that, in birds, Ipc axons control the ascending tectal outflow of retinal signals through direct synaptic contacts with the TGCs.


Asunto(s)
Dendritas/ultraestructura , Ganglios Sensoriales/citología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Colículos Superiores/citología , Vías Visuales/fisiología , Animales , Pollos , Toxina del Cólera/metabolismo , Femenino , Masculino , Microscopía Electrónica , Modelos Anatómicos , Fitohemaglutininas , Terminales Presinápticos/ultraestructura , Colículos Superiores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...